School of Mathematics
FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS UNDERGRADUATE DEGREES 2019
IMPORTANT INFORMATION

Information provided by the University, such as in presentations, University brochures and on the University website, is accurate at the time of first disclosure. However, courses, University services and content of publications remain subject to change. Changes may be necessary to comply with the requirements of accrediting bodies or to keep courses contemporary through updating practices or areas of study. Circumstances may arise outside the reasonable control of the University leading to required changes. Such circumstances include industrial action, unexpected student numbers, significant staff illness (where a course is reliant upon a person’s expertise), unexpected lack of funding, severe weather, fire, civil disorder, political unrest, government restrictions and serious concern with regard to the transmission of serious illness making a course unsafe to deliver. After a student has taken up a place with the University, the University will look to give early notification of any changes and try to minimise their impact, offering suitable alternative arrangements or forms of compensation where it believes there is a fair case to do so. Offers of a place to study at the University will provide up-to-date information on courses. The latest key information on courses, entry requirements and fees can be found at courses.leeds.ac.uk. Please check this website before making any decisions.
A mathematics degree will provide you with a range of transferable and specific skills to help you in your future career. Mathematics graduates are numerate, intellectually independent, can think logically and laterally, and are able to identify problems and come up with real solutions: all skills that employers need.

At Leeds we have an active research environment which enables us to offer exciting courses taught by experts who are leaders in their fields.

Your degree from the University of Leeds and the wider experience you’ll gain while you’re studying here will help you stand out from the crowd and secure the job you want when you graduate.

“The School of Mathematics at Leeds has a top-ten research reputation. As a large School, we offer a wide range of modules and programmes taught by mathematicians with international standing.”

PROFESSOR ALASTAIR RUCKLIDGE,
HEAD OF THE SCHOOL OF MATHEMATICS

In recognition of our strong and continued commitment to gender equality, we have received a prestigious Athena SWAN Bronze Award.

This is awarded by the Equality Challenge Unit, the national body that promotes equality in the higher education sector.
The School of Mathematics at the University of Leeds is one of the biggest departments of its kind in the country. With a wide offering of courses and modules, covering topics ranging from transformation geometry and graph theory to cosmology and Bayesian statistics, you can pursue your own interests while building the foundations of your career.

Optional discovery modules mean you can also study subjects other than maths if you want to – for instance, learn a new language or pursue a passion for literature.

DISCOVERY MODULES

As well as the compulsory and optional modules that make up your course, you’ll have the chance to take discovery modules. These allow you to pursue interests outside of mathematics during your course.
INDUSTRY-RELEVANT COURSES

Our Mathematics, Mathematics and Statistics and joint honours courses all offer the chance to study your subjects in a business and finance context, so you graduate with practical skills as well as a deep understanding of theory.

Additionally, we work closely with our leading Business School to offer mathematics courses tailored for the world of enterprise.

Actuarial Mathematics BSc, Economics and Mathematics BSc, Financial Mathematics BSc and Business Management and Mathematics BSc are jointly taught by the School of Mathematics and the Business School to ensure you learn from experts in both academia and industry.

INTEGRATED MASTERS

Some of our courses are available either as three-year BSc degrees or four-year MMath, BSc Integrated Masters degrees.

You can switch between the MMath and BSc versions of the course during your first two years of study, so you don’t need to decide right away. Taking an MMath means you’ll study an additional year of advanced modules, helping you to distinguish yourself from other graduates or prepare for a future PhD.

YEAR ONE

In your first year, you’ll study core concepts in mathematical theory, including number systems, sets, series and sequences, and probability. You’ll also have the option to study financial mathematics, establishing a foundation for applying your knowledge to the business world.

YEAR TWO

In year two, you will broaden your knowledge and begin to specialise by choosing from a varied range of optional modules, including numerical analysis, fluid dynamics, Markov processes and geometry of curves and surfaces. You can also choose modules focused on using maths in a workplace or educational setting.

YEAR THREE

Your third year will see you choose from advanced modules in specialised topics. This is your chance to really master the areas of mathematics that interest you the most. If you’re studying for a BSc, you will also complete a research assignment as part of a team.

YEAR FOUR (MMATH)

In your fourth year, you will continue to study advanced modules; while you can specialise in one area, you’re also free to discover new topics if you wish. You’ll also choose an independent study assignment that will allow you to explore the subjects that interest you the most in detail.

ACCREDITATION

Some of our courses, including our BSc/MMath, BSc Mathematics, BSc Mathematics and Statistics and BSc Financial Mathematics degrees, are accredited by the Royal Statistical Society. Studying these courses is the first step on the path to becoming a chartered statistician.

STUDENT SUPPORT

We take great care of our students. As well as being assigned a personal tutor to guide you through your studies with us, you’ll be supported by fellow students through our popular peer mentor scheme.

You can also join the student-run Maths Society, which brings together students from all years with an interest in maths. As well as organising nights out and trips abroad, the Society offers plenty of sporting opportunities and career events throughout the year.
REWARDING CAREERS

Over 98% of our recent graduates have successfully secured employment or gone on to further study within six months of graduating (DLHE, 2015-16).

From accountant to engineer, meteorologist to software developer, the career possibilities of a maths graduate are endless. A degree in maths can help to prepare you for some of the most highly paid and enjoyable jobs in a variety of industries.

A mathematics degree will develop your analytical, writing, problem-solving, presentation, communication, teamworking and computing skills, which is what makes you so employable as a graduate in this field. The city of Leeds is home to the headquarters of Capita, CYBG, Leeds Building Society and many other major employers, making it an ideal place for mathematics graduates to begin their careers.

CAREERS SUPPORT

We support you from your first year through to your final year with a series of activities to enhance your employability and support your career planning.

Our dedicated Employability team will help you through the career decision-making process, support you in your applications for work experience and graduate jobs, and bridge the gap between you and employers. Our specialist, qualified staff are here to help you succeed on the path to your perfect career, so you feel supported along the way.

You’ll benefit from:

- Maths at Work: a second year module providing insight into where mathematics may be used in a professional or commercial environment
- timetabled employability sessions at all stages of your course
- the opportunity for paid summer internships in local SMEs, charities, University of Leeds departments and multi-national organisations.
- practical help with developing a CV, making applications, and preparing for interviews and assessment centres
- one-to-one guidance or coaching appointments to focus on you and your future
- a series of employer-led presentations and workshops throughout the academic year
- Royal Statistical Society accreditation for several of our courses, which makes your degree more valuable in the eyes of future employers.

Our Careers Centre and Employability team organise an annual STEM Careers Fair, giving you many opportunities to meet graduate recruiters, gain an insight into graduate jobs and explore placement and internship opportunities, giving you the best start to your career.

The University of Leeds is a top-ten university targeted by employers (The Graduate Market in 2018, High Fliers Research). Some recent employers on campus targeting maths students have included Accenture, Willis Towers Watson, EY, NHS Digital, Unilever and IBM.

“Having a good grasp of maths has been an enabling factor in all the roles in my career so far. Another enjoyable aspect is working with NHS colleagues, in particular ensuring that the decisions being taken by the Department will play out as intended on the front line of patient care.”

JAMES MORGAN, MATHEMATICS BSC
HEAD OF THE FOUNDATION TRUST UNIT,
DEPARTMENT OF HEALTH
Next year I am going to Singapore, and I am so excited — although partly sad to be leaving Leeds for the year! It’s been so easy to apply and I got my first choice university which was a great feeling.

ERIN FIGOV, MATHEMATICS BSC
STUDY ABROAD YEAR IN SINGAPORE

“During my research project on Algorithmic Funds I created a machine learning program designed to analyse economic variables and help predict and monitor economic shocks. I enjoyed liaising with my firm’s director of investments to test the model’s efficacy and potential uses within the firm.”

JACOB SMITH, MATHEMATICS MMATH, BSC
INDUSTRIAL PLACEMENT AT REDMAYNE BENTLEY LLP

All our courses give you the chance to study abroad as part of your degree.

If you opt for one of the MMath courses, you can take a year abroad without extending the length of your degree. You would typically spend your third year studying mathematics at a partner institution, and then return to Leeds for your final year.

A year of living and studying abroad is a unique prospect. You’ll experience new ways of working and thinking, and gain insights into how mathematics fits into business and daily life all over the world.

You’ll also gain an overseas education and develop new skills that will impress future employers.

We have relationships with many international universities, representing some of the best places to study abroad across the world.

We have over 400 partner institutions around the globe to choose from. Recently, mathematics students have studied in Hong Kong, Rio de Janeiro, Melbourne, Copenhagen and Ontario, to name just a few places. If you need help learning a new language before you set off, the University’s Language Centre will be on hand to arrange study opportunities ahead of time.

“Next year I am going to Singapore, and I am so excited — although partly sad to be leaving Leeds for the year! It’s been so easy to apply and I got my first choice university which was a great feeling.”

ERIN FIGOV, MATHEMATICS BSC
STUDY ABROAD YEAR IN SINGAPORE

All our degrees include the option to complete a placement year in industry, which would be the third year of your course.

You don’t need to decide whether to take a placement year right away; you can make your mind up when you’re here, normally at the start of your second year.

From year one, you’ll be able to access support to enable you to make the best decision regarding your placement year search and applications. We have a dedicated Employability team who will work with you during a series of placement information and preparation sessions.

There will also be opportunities to book one-to-one appointments to help with your placement search, as well as access to a range of placements on the University’s vacancy system.

We successfully place students with a range of employers. Recent examples include L’Oreal, PwC, Goldman Sachs, National Grid, Intel and Converse.
Mathematics is a far-reaching discipline, encompassing many fascinating topics. Because the subject is so diverse, we offer mathematics courses that are flexible and provide a huge amount of choice, allowing you to explore areas that most interest you.

In year one, you’ll be given a solid grounding in the major branches of mathematics, including calculus, algebra, statistics and mechanics. Having been able to establish where your interests lie in your first year, the years that follow allow you to study these areas in greater depth.

In the second year of the course, available modules span topics in statistics, pure, applied and computational mathematics. You’ll have options as varied as fluid dynamics, environmental statistics and mathematical logic. You can start to specialise in a particular area of mathematics according to your interests or aspirations. Alternatively, you can retain a broad mathematical base and explore several different areas.

The third and fourth years of our mathematics courses are devoted to advanced modules covering the spectrum of mathematics topics. In the final year of both the BSc and MMath courses, you’ll carry out an independent research project. There are several themes that your project can relate to and you’ll be able to choose a topic that interests you or (for MMath students) even propose a topic of your own.

You will graduate as a multiskilled mathematician, perhaps with a particular expertise, with the training necessary to work in a specific industry, or with a broad knowledge of a range of mathematical topics.

“My favourite thing about the course is the freedom to study what I want. Maths is an incredibly broad subject and it is rare that someone will enjoy all aspects of it, and Leeds appreciates that. The range of optional modules lets you study the maths you find most interesting.”

JACK DAVIS
MATHEMATICS BSc
Statistics make up an increasingly important part of our world. From government agencies to multinational companies, people who can compile, explain, interpret and act upon statistical data are in high demand.

This course introduces you to core mathematics topics alongside studying statistics to an advanced level, while still giving you the flexibility to explore other areas that interest you. It shares a very similar programme with Mathematics BSc and Mathematics MMath, BSc, but you will focus a greater proportion of your credits in statistics-related optional modules.

The first year of your course will introduce you to the main branches of mathematics and statistics. You’ll develop a solid understanding of these central areas, which will provide you with the necessary background knowledge to then explore more advanced topics later in your programme. The wide range of subjects you will study at this stage allows you to discover the areas of mathematics, statistics and data analysis that you may want to use in a future career.

In your second year, you’ll study core modules in analysis, groups and vector spaces, vector calculus, and linear differential equations and transforms. As well as some core statistics modules you can also study statistical modules covering practical subjects such as environmental statistics and survival analysis. Optional modules such as Mathematics Into Schools and Maths at Work are also available to help build your knowledge for certain career paths.

During your third year and fourth year, if you choose the MMath course, at least half your modules will be in statistics. However, you still have the freedom to study a wide variety of options, including modules from pure and applied mathematics. MMath students will also select from a range of specially devised Masters-level modules. There is a final-year project, where you will work with a member of our academic team in a specialised area of interest to you.

“I have really enjoyed studying Mathematics and Statistics at degree level. The fact that some modules are tailored especially to real-world environments has really helped me see where my career could progress after my degree.”

ALEX NAYLOR
MATHEMATICS AND STATISTICS BSc

FOR FULL COURSE DETAILS, INCLUDING MODULE INFORMATION, VISIT
courses.leeds.ac.uk
This course integrates the study of mathematics with business finance, accounting and economics. You’ll be introduced to the major areas of mathematics and finance and develop a broad base of skills.

On this course, you’ll be taught jointly by the School of Mathematics and Leeds University Business School. Two-thirds of your time is spent on mathematics, including modules in financial mathematics covering modelling of financial and insurance markets, as well as pure, applied and statistical modules.

The remaining one-third is spent studying business finance, accounting and economics.

In the first year of the course you’ll study key mathematics topics, including calculus and linear algebra, probability and statistics, and financial mathematics. In addition, you’ll be introduced to financial accounting, management accounting and economic theory.

The second year builds on the knowledge you acquired in first year, with more in-depth modules on financial mathematics, statistics, accounting, microeconomics and macroeconomics. There is also a chance for you to broaden your knowledge base through optional modules on topics such as computational mathematics and survival analysis.

In the final year, about one-third of your time is spent on core modules in banking and finance, data analysis and advanced stochastic modelling in finance. In the remaining time, you have freedom of choice to pursue particular interests through a broad selection of optional modules devoted to mathematics, statistics, finance, business studies and economics.

Studying Financial Mathematics is excellent preparation for a variety of careers. While many graduates go on to work in investment banking and finance, you can apply the skills you learn on this course in many different roles, including data science, software development and entrepreneurship. Graduates from the School of Mathematics have secured positions in companies like KPMG, Deloitte, Goldman Sachs and IBM.
Actuaries use a variety of mathematical techniques to solve real business problems. This involves reasoning about risk and quantifying the impact of future events. They’re highly sought-after as key strategists and advisors for governments, banks and multinational companies.

On this course, you’ll be taught jointly by the School of Mathematics and Leeds University Business School, exploring key topics in mathematics, finance, economics and accounting. The work is intellectually stimulating, while also preparing you for a potential career that is highly rewarding financially.

There is an increasing demand for actuaries in both the private and public sector, working in a variety of areas such as banking, investment management, consultancy, manufacturing, transport, insurance and pensions.

In the first year of the course, you will study key topics in mathematics, finance, economics and accounting, including probability, statistics, and the mathematics of financial and insurance markets.

In the second year, you’ll study core modules in financial mathematics, statistical methods, and business finance. At this stage, you’ll also be able to choose some optional modules.

In the final year of the course, you’ll have further core modules in actuarial mathematics, financial modelling and statistics. You’ll also be able to choose from a variety of optional modules in mathematics, statistics, finance and economics, allowing you to explore the topics related to actuarial mathematics that really interest you.

This course covers much of the content of the first level professional exams from the Institute and Faculty of Actuaries. On graduation, you will be in a good position to undertake the professional exams and may be able to apply for certain exemptions from these exams.

“My course has allowed me to make friends with people who have similar ambitions and interests to myself, who I probably wouldn’t have met otherwise. Making friends with people on your course is also really handy as you can work alongside each other on difficult work.”

WILLIAM MORRIS
ACTUARIAL MATHEMATICS BSc
This degree will give you firm foundations in the major areas of mathematics and economics and enable you to explore mathematical applications in economics.

On this course, you’ll be taught jointly by the School of Mathematics and Leeds University Business School, spending about half of your time at each. Your economics modules will give you in-depth understanding of what drives economies and what can cause them to fail. You’ll get to grips with concepts including supply and demand, and scarcity, and you’ll study key techniques in econometrics.

Your mathematics modules will provide a solid grounding in core topics such as algebra, calculus and statistics. Optional modules allow you to explore topics in pure and applied mathematics.

In your first year, you’ll be introduced to micro- and macroeconomics, and will study the key labour market ideas and develop knowledge of the structures and institutions of industry.

In mathematics, you’ll study core topics including probability and statistics, calculus and mathematical analysis, and linear algebra.

In year two, you’ll study advanced topics in micro- and macroeconomic theory. You’ll be introduced to econometric tools you can use to test economic theories and to theoretical and practical aspects of optimisation. You can also choose to study topics such as statistics, financial mathematics, differential equations and discrete mathematics.

In your final year, you will undertake a project in either mathematics or economics. For the remainder of the year, you can choose from a wide variety of optional modules in economics and mathematics.

“Some of the modules like econometrics, linear regression and statistics cross easily over the two subjects, but at the same time each course demands different things and skills from you and I am enjoying challenging myself in that way.”

ARAFAT ARIORI
ECONOMICS AND MATHEMATICS BSc (INDUSTRIAL)
This course allows you to explore mathematics, statistics, economics and psychology in the context of business management. You’ll develop knowledge and understanding of how your mathematical and statistical skills can be applied in the world of business.

On this course, you’ll be taught jointly by the School of Mathematics and Leeds University Business School, spending about half your time at each. The course will enable you to appreciate the connections between quantitative techniques and management theory, which will give you an edge in understanding the mathematical representation of business situations and the evaluation of evidence within complex organisational systems.

In your first year, you will learn about key ideas from management and human behaviour in organisations, while studying core mathematical topics, including calculus, differential equations, linear algebra, probability and statistics, and financial mathematics.

In year two, the management aspect of your course will encompass modules in marketing, anthropology, and organisational behaviour. You’ll also be able to choose optional modules on topics ranging from corporate social responsibility to global business history. Within mathematics, you’ll develop your knowledge of statistics and optimisation, and have the option to explore computational mathematics, mathematical analysis, financial mathematics, and more.

In your final year you will undertake either a management dissertation or a project in mathematics. In addition, you’ll be given a wide variety of management and mathematics options from which to choose.

“The School of Mathematics really impressed me. I got the vibe that it was a really personable and social place to be, and I have definitely learnt that lecturers and staff are always keen to help you if you have any issues.”

LUKE TURNER
MANAGEMENT AND MATHEMATICS BSc
Links between mathematics and music have been known since the time of Pythagoras. From the vibration of a guitar string and the analysis of a rhythmic pattern to the use of randomness in 20th century experimental music, mathematics continues to impact music at every level.

This course provides a thorough grounding in mathematics, music and the deep connections between them.

In your first year you’ll study key mathematics topics, including calculus, differential equations and linear algebra, plus you’ll have the option to study geometry or probability and statistics.

Your studies in music will begin with developing key music research skills, along with options to study composition, performance and music in history and culture.

In year two you will study the mathematics of music, vector calculus and music in context, as well as optional modules from a wide range in both subjects. Your music studies could explore the psychology of listening and performance or interpreting music.

In mathematics, modules are available across the major branches of the subject, from algebra to numerical analysis.

In your final year, you will undertake a project, which could be focused on mathematics or music. You’ll have a great deal of independence in shaping your studies due to the variety of optional modules available, allowing you to specialise in your particular areas of interest.

From the ancient philosophies of Plato and Aristotle to Gottfried Leibniz and Bertrand Russell, mathematical and logical analysis has always helped shape philosophical thought.

Studying mathematics with philosophy will provide you with a thorough grounding in mathematical structures and techniques while allowing you to explore a range of philosophical concepts, such as logic, language and political philosophy.

In year one you’ll study core modules in each subject, introducing you to key concepts and approaches in both maths and philosophy such as logic, linear algebra, calculus and moral philosophy. You’ll also have the chance to choose from further optional modules or take discovery modules from across the University.

Later, in years two and three you will study a range of core and optional modules including: vector calculus and formal logic, quantum mechanics, coding theory, philosophy of logic and mathematics, the structure of reality and Kant’s ethical theory. You will also undertake a research project in your final year.
Advances in biological science have stimulated the development of new mathematics, leading to new ways of understanding our place in the universe. On this course, you'll study topics at the cutting edge of biological discovery while exploring the major branches of mathematics.

This course allows you to study biology modules that reflect the complexity of the subject area, encompassing everything from molecules to populations of organisms. In mathematics, you'll have the option to study a wide range of topics, from calculus and algebra to probability and statistics.

In your first year, your studies in biology may include cell biology, genetics, biodiversity, applied biology and agriculture. In mathematics, you'll be given a firm grounding in core topics such as calculus and mathematical analysis, differential equations and linear algebra.

In year two, your mathematics modules will include vector calculus, linear and nonlinear differential equations, and statistics. You'll choose from biology modules including ecology, plants, animals, evolution, genetics and bioinformatics.

In year three, you'll undertake a research project in biology or mathematics. You'll also study mathematical biology and take a combination of optional modules from a range of pure, applied and statistical topics, and a variety of biological modules, on subjects including zoology, evolution and food security.

Chemistry and Mathematics BSc: UCAS code FG11 / Entry grades AAB / Duration 3 years

Chemistry and Mathematics MChem, BSc: UCAS code F1GC / Entry grades AAA / Duration 4 years

Using the tools of advanced mathematics to understand the diversity and complexity of the chemical world is what really drives students on our chemistry and mathematics joint honours degrees.

On this degree, you'll principally study alongside single honours chemists and mathematicians who are learning the same concepts and reaching the same depth of knowledge as you. As you move through the course, you'll have the opportunity to specialise in a range of topics in both areas of your course and vary the split between the two components to study the topics that interest you the most.

In studying mathematics, you will develop your skills in core subject areas such as linear algebra and calculus. A wide range of optional modules available to you from your second year onwards will allow you to pursue areas from quantum mechanics to probability theory, fluid dynamics, computational modelling, statistical analysis and combinatorics.

You will combine your mathematical skills with the study of chemistry to understand how and why molecules react and the methods that are employed to study them. This course can also be taken as a four-year MChem Integrated Masters degree.
COMPUTER SCIENCE WITH MATHEMATICS

Computer Science with Mathematics BSc:
UCAS code G4G1 / Entry grades AAA / Duration 3 years

Computer Science with Mathematics MSci, BSc:
UCAS code G4G2 / Entry grades AAA / Duration 4 years

This course explores the close relationship between mathematics and computer science. You will study core topics in both areas and specialise in topics which link the two schools at Leeds, in particular logic, algorithms, scientific computing, big data and complexity science.

In year one you will begin by covering a range of fundamental topics in computer programming, systems, modelling, applied mathematics, pure mathematics and statistics. Later, you can specialise in aspects of discrete mathematics, algorithms, scientific computation or complex systems.

The discrete mathematics theme explores development, analysis and application of algorithms for computationally hard problems, for example in computer networking and security. Scientific computation focuses on analysis and implementation of high-performance and parallel numerical algorithms.

Applications include fluid dynamics, combustion and atmospheric dispersion. The complex systems specialism lays the foundation for the interdisciplinary study of the world around us, from genetics to ecology, from neuroscience to social networks, and from finance to the web.

You will also undertake an individual project, which is an opportunity for you to work on a detailed area closely with a member of staff. The course can be taken as a four-year MSci, BSc Integrated Masters.

FOR FULL COURSE DETAILS, INCLUDING MODULE INFORMATION, VISIT
courses.leeds.ac.uk
MODULES

This lists the modules available on our Mathematics and Mathematics and Statistics courses.

For a complete list of modules for other courses, please visit the relevant course page on our website.

Year 1: Compulsory modules

| Mathematics 1 | Number Systems | Probability and Statistics I |
| Mathematics 2 | Sets, Sequences and Series | Probability and Statistics II |

Year 1: Optional modules

| Financial Mathematics 1 | Introduction to Geometry |

Year 2: Compulsory modules

| Real Analysis | Vector Calculus | Computational Mathematics |
| Groups and Vector Spaces | Linear Differential Equations and Transforms |

Year 2: Optional modules

Calculus of Variations	Introduction to Markov Processes	Rings and Polynomials
Discrete Mathematics	Introduction to Optimisation	School Mathematics from an Advanced
Discrete Mathematics with Computation	Mathematical Logic 1	(Undergraduate) Perspective
Environmental Statistics	Mathematics into Schools	Special Relativity
Financial Mathematics 2	Maths at Work	Statistical Methods
Financial Mathematics 3	Nonlinear Differential Equations	Statistical Modelling
Fluid Dynamics 1	Numerical Analysis	Survival Analysis
Geometry of Curves and Surfaces	Numerical Analysis with Computation	The Mathematics of Music

Years 3 and 4 (MMath): Compulsory modules

| Project in Mathematics (Year 3 of BSc) | Assignment in Mathematics (Year 4 of MMath) |

Years 3 and 4 (MMath): Optional modules

Actuarial Mathematics 1	Commutative Rings and Algebraic Geometry	Linear Regression and Robustness
Actuarial Mathematics 2	Computational Mathematics	Linear Regression, Robustness and Smoothing
Advanced Astrophysical Fluid Dynamics	Cosmology	Mathematical Biology
Advanced Commutative Rings and Algebraic Geometry	Differential Geometry	Mathematical Methods
Advanced Dynamical Systems	Discrete Mathematics with Computation	Mathematics Education
Advanced Differential Geometry	Discrete Systems and Integrability	Metric and Function Spaces
Advanced Discrete Systems and Integrability	Dynamical Systems	Metric Spaces and Functional Analysis
Advanced Dynamical Systems	Fluid Dynamics 2	Models and Sets
Advanced Entropy in the Physical World	Generalised Linear and Additive Models	Models in Actuarial Science
Advanced Geophysical Fluid Dynamics	Generalised Linear Models	Multivariate Analysis
Advanced Hydrodynamic Stability	Geometry of Curves and Surfaces	Multivariate and Cluster Analysis
Advanced Linear and Nonlinear Waves	Geophysical Fluid Dynamics	Number Theory
Advanced Mathematical Biology	Graph Algorithms and Complexity Theory	Numerical Analysis with Computation
Advanced Mathematical Methods	Graph Theory	Numerical Methods
Advanced Models and Sets	Graph Theory: Structure and Algorithms	Philosophy of Logic and Mathematics
Advanced Proof and Computation	Groups and Symmetry	Proof and Computation
Analytic Solutions of Partial Differential Equations	Groups, Symmetry and Galois Theory	Statistical Computing
Astrophysical Fluid Dynamics	Hilbert Spaces and Advanced Fourier Analysis	Statistical Theory
Bayesian Statistics	Hilbert Spaces and Fourier Analysis	Statistics and DNA
Calculus in the Complex Plane	History of Mathematics	Stochastic Financial Modelling
Calculus of Variations	Hydrodynamic Stability	Survival Analysis
Coding Theory	Introduction to Clinical Trials	Time Series
Combinatorial Optimisation	Introduction to Entropy in the Physical World	Time Series and Spectral Analysis
Combinatorics	Introduction to Statistics and DNA	Topology
	Linear and Non-Linear Waves	Transformation Geometry

These are typical modules/components studied and may change from time to time.
ENTRY REQUIREMENTS AND HOW TO APPLY

<table>
<thead>
<tr>
<th>Degree</th>
<th>UCAS code</th>
<th>Duration (years)</th>
<th>A-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics BSc</td>
<td>G100</td>
<td>3</td>
<td>AAA/A*AB where the first grade quoted is Mathematics.</td>
</tr>
<tr>
<td>Mathematics MMath, BSc</td>
<td>G101</td>
<td>4</td>
<td>AAB/ABB including Further Mathematics and where the first grade quoted is Mathematics, or AAB/ABB where the first grade quoted is in Mathematics plus A in AS Further Mathematics.</td>
</tr>
<tr>
<td>Mathematics and Statistics BSc</td>
<td>GG13</td>
<td>3</td>
<td>AAB/ABB including Further Mathematics and where the first grade quoted is Mathematics, or AAB/ABB where the first grade quoted is in Mathematics plus A in AS Further Mathematics.</td>
</tr>
<tr>
<td>Mathematics and Statistics MMath, BSc</td>
<td>GG1H</td>
<td>4</td>
<td>AAB/ABB including Further Mathematics and where the first grade quoted is Mathematics, or AAB/ABB where the first grade quoted is in Mathematics plus A in AS Further Mathematics.</td>
</tr>
<tr>
<td>Financial Mathematics BSc</td>
<td>G1N3</td>
<td></td>
<td>AAB/ABB including Further Mathematics and where the first grade quoted is Mathematics, or AAB/ABB where the first grade quoted is in Mathematics plus A in AS Further Mathematics.</td>
</tr>
<tr>
<td>Actuarial Mathematics BSc</td>
<td>NG13</td>
<td>3</td>
<td>AAB/A*AB where the first grade quoted is Mathematics.</td>
</tr>
<tr>
<td>Economics and Mathematics BSc</td>
<td>GL11</td>
<td>3</td>
<td>AAA/A*AB where the first grade quoted is Mathematics.</td>
</tr>
<tr>
<td>Business Management and Mathematics BSc</td>
<td>GN12</td>
<td>3</td>
<td>AAB, including Music and A in Mathematics.</td>
</tr>
<tr>
<td>Mathematics and Music BSc</td>
<td>GW13</td>
<td>3</td>
<td>AAB, including A in Mathematics.</td>
</tr>
<tr>
<td>Mathematics and Philosophy BSc</td>
<td>GVC5</td>
<td>3</td>
<td>AAB, including Biology and A in Mathematics.</td>
</tr>
<tr>
<td>Biology and Mathematics BSc</td>
<td>CG11</td>
<td>3</td>
<td>AAB, including both Chemistry and Mathematics, with A in Mathematics.</td>
</tr>
<tr>
<td>Chemistry and Mathematics BSc</td>
<td>FG11</td>
<td>4</td>
<td>AAA, including both Chemistry and Mathematics.</td>
</tr>
<tr>
<td>Chemistry and Mathematics MChem, BSc</td>
<td>FG1C</td>
<td>4</td>
<td>AAA, including both Chemistry and Mathematics.</td>
</tr>
<tr>
<td>Computer Science and Mathematics BSc</td>
<td>G4G1</td>
<td>3</td>
<td>AAA, including Mathematics.</td>
</tr>
<tr>
<td>Computer Science and Mathematics MSci, BSc</td>
<td>G4G2</td>
<td>4</td>
<td>AAA, including Mathematics.</td>
</tr>
</tbody>
</table>

A-level General Studies and Critical Thinking are excluded. Where an A-level science subject is taken, we require a pass in the practical science element, alongside the achievement of the A-level at the stated grade.

We also accept a variety of alternative qualifications. Please check our website for details.

ENGLISH LANGUAGE REQUIREMENTS

GCSE English Language grade C/4 (B/6 for GL11 and GN12) or an equivalent recognised English language qualification, eg IELTS 6.0 (6.5 for GL11, GN12 and GW13) overall with no less than 5.5 (6.0 for GL11, GN12 and GW13) in each element.
ACCESS TO LEEDS

We’re committed to identifying the best possible applicants, regardless of personal circumstances or background. If you do not meet our entry criteria, you may be eligible through the Access to Leeds scheme.

leeds.ac.uk/a2l

HOW TO APPLY

All undergraduate applications should be made through the Universities and Colleges Admissions Service (UCAS).

ucas.com

POST-APPLICATION VISIT AFTERNOONS

Suitable applicants will be invited to a post-application visit afternoon, which gives you the opportunity to meet our academic staff and students, enjoy a tour of our facilities, view student accommodation, and find out more about your course.

This will give you the chance to assess whether it’s the right course for you and your career plans, have any questions answered and get an impression of what it’s like to study at Leeds.

SCHOLARSHIPS

The University of Leeds has a long-standing history of helping students to manage their finances while at University, with a comprehensive range of bursaries and scholarships available.

maths.leeds.ac.uk/undergraduate/scholarships

CONTACT US

If you require any more information about our courses, modules or any other aspect of studying mathematics at Leeds, please contact our Undergraduate Admissions team.

School of Mathematics
University of Leeds
Leeds LS2 9JT, UK

Tel: +44 (0)113 343 5133
Email: maths.admiss@leeds.ac.uk

FIND US ONLINE

maths.leeds.ac.uk
@mathsleedsuni
IMPORTANT INFORMATION

Information provided by the University, such as in presentations, University brochures and on the University website, is accurate at the time of first disclosure. However, courses, University services and content of publications remain subject to change. Changes may be necessary to comply with the requirements of accrediting bodies or to keep courses contemporary through updating practices or areas of study. Circumstances may arise outside the reasonable control of the University leading to required changes. Such circumstances include industrial action, unexpected student numbers, significant staff illness (where a course is reliant upon a person’s expertise), unexpected lack of funding, severe weather, fire, civil disorder, political unrest, government restrictions and serious concern with regard to the transmission of serious illness making a course unsafe to deliver. After a student has taken up a place with the University, the University will look to give early notification of any changes and try to minimise their impact, offering suitable alternative arrangements or forms of compensation where it believes there is a fair case to do so. Offers of a place to study at the University will provide up-to-date information on courses. The latest key information on courses, entry requirements and fees can be found at courses.leeds.ac.uk. Please check this website before making any decisions.
As a natural scientist, you will be uniquely positioned to tackle this next generation of scientific challenges because the concepts and language of multiple scientific disciplines are taught to you from day one of your degree.

At Leeds we have an active research environment which enables us to offer exciting courses taught by experts who are leaders in their fields. You’ll be directly engaged in research through project work.

Your degree from the University of Leeds and the wider experience you’ll gain while you’re studying here will help you stand out from the crowd and secure that all-important graduate job.

“Leeds has always been at the forefront of interdisciplinary research, and achieving the Teaching Excellence Framework Gold Award also shows how we translate these skills to deliver an outstanding education and exceptional student experience.”

DR PAUL BEALES
NATURAL SCIENCES PROGRAMME MANAGER

In recognition of our strong and continued commitment to gender equality, we have received a prestigious Athena SWAN Bronze Award.

This is awarded by the Equality Challenge Unit, the national body that promotes equality in the higher education sector.
The problems facing today's scientists are increasingly complex, and it's rare that a single discipline can provide all the answers. Interdisciplinarity and collaborative working are key to modern research, and they're central to natural sciences too.

Natural Sciences can be studied as a three-year BSc or a four-year Masters, BSc degree. Both allow you to develop specialisms from a wide range of science subjects, with a particular focus on combining the strengths of each subject into an interdisciplinary framework.

This approach also recognises that not everybody's interests fit neatly into moulds like chemist, physicist or biologist – and that by bringing together different elements of distinct branches of science, new and exciting fields of study can be explored.

With our Natural Sciences degree, you essentially build the course you want to study, and become the scientist you want to be. You choose which sciences to focus on, and how much to study of each, by choosing modules from the following subjects:

- Biology
- Biochemistry
- Chemistry
- Environmental Science
- Food Science and Nutrition
- Mathematics
- Physics
OUR INTERDISCIPLINARY CENTRES

The University of Leeds' interdisciplinary centres bring together scientists from all specialisms, from all over the world, to work on the latest challenges and fields of research. They represent the collaborative spirit and multifaceted expertise at the heart of natural sciences.

As an undergraduate, you'll get to see first-hand the difference interdisciplinary research can make at these centres, which align with the scientific themes mapped out in the Natural Sciences course. You may even eventually use them for your own final year and postgraduate research projects.

THE ASTBURY CENTRE

Home to a Wellcome Trust-funded PhD programme, the Astbury Centre for Structural Molecular Biology brings together scientists and experts from physics, biology and chemistry to explore the molecular basis for life, creating a truly interdisciplinary place to teach and learn.

The Centre has cutting-edge research infrastructure for structural microbiology techniques, including a £17m investment in brand new nuclear magnetic resonance machines and electron microscopes that show how biological molecules function on the atomic level.

THE PRIESTLEY CENTRE

The Priestley International Centre for Climate is unique in bringing together world-leading expertise in all the key strands of climate change research. The focus is on new research partnerships that improve links between our physical, technological, economic and social understanding of climate change with strategies for mitigation and adaptation.

The Centre is a key partner in the development of UK national climate modelling capability, making use of extensive local and national high-performance computing resources.

THE BRAGG CENTRE

Advanced materials are changing all our lives, and a major new £96m international centre for engineering and physical sciences will help to foster a culture of interdisciplinary working in the development of novel materials to address 21st-century challenges.

Due to be completed in 2020, the Bragg Centre for Advanced Functional Materials will bring together scientists and researchers from Chemistry, Physics and Astronomy, Computing and Engineering to work on the biggest technical challenges facing industry and science.

LEEDS INSTITUTE FOR DATA ANALYTICS

Data is at the heart of many branches of science, and making sense of big datasets is a key component of the future of interdisciplinary research.

Supporting more than 20 research centres, programmes and projects, the Institute brings together researchers and data scientists from various disciplines including medicine, biological sciences, geography, transport studies, mathematics and many more.

“Interdisciplinary research provides a broader view of a specific question and, in the long run, saves time and effort while also providing more accurate and relevant analyses.”

ASIF FAZAL
NATURAL SCIENCES MNATSC
LEARNING AND TEACHING

The future is interdisciplinary. Be a part of it.

The major scientific breakthroughs of the future will be interdisciplinary, with scientists from across different specialisms working together to solve the world’s biggest problems.

At Leeds, we’re at the forefront of those breakthroughs. Our approach to interdisciplinary research feeds into our teaching. Whether you want to understand more about how to combine physics and maths to study the quantum world, to model the growth of biological populations or to understand biochemistry at the atomic level, we have the perfect team to guide you.

DISCOVERY MODULES

As well as the compulsory and optional modules that make up your course, you’ll have the chance to take discovery modules. These allow you to pursue interests outside of natural sciences during your course.
OUR EXPERTISE

Our Natural Sciences course is delivered by world-leading scientists from academic schools across the University. Continual investment in our schools and interdisciplinary centres means we provide them with the resources, facilities and equipment they need to keep making discoveries and ensure we stay at the cutting edge of modern science.

FLEXIBLE DEGREES

Natural Sciences can be taken as a three-year BSc, or as a four-year Integrated Masters, BSc degree. It’s one of the most flexible science courses you can study: you can devote your time to a particular specialism across multiple disciplines, or work towards knowing as much as possible about a variety of topics.

You also have the opportunity to spend a year studying abroad or undertaking an industrial placement. If you decide to do this, your degree will extend by a year.

There’s no need to decide anything now. You don’t even have to tell us which sciences you want to study until you arrive at Leeds.

STUDENT SUPPORT

We take great care of our students. As well as being assigned a personal tutor to guide you through your studies with us, each subject has a specialist link tutor to provide support on the programme. You’ll also be supported by fellow students through our popular peer mentoring scheme.

Using our Virtual Learning Environment, you can access learning resources including reading lists, past exam papers, skills guides and assessment guides. You’ll also be able to play back video recordings of your lectures and download lecture notes.

“Leeds prides itself for its interdisciplinary research. This made the University of Leeds a perfect place to witness how traditionally separate disciplines can come together to fulfil mutual scientific goals.”

ADIL SHAH

NATURAL SCIENCES MNATSC
CAREERS AND EMPLOYABILITY

Natural scientists who are used to working together to find innovative solutions are in high demand. Over 88% of our recent graduates have successfully secured a professional or managerial role or gone on to further study within six months of graduating (DHLE, 2015/16).

The University’s links with industry mean you will have opportunities to spend time in a workplace setting, as well as learning about the commercial applications of interdisciplinary science on your course. We’re also one of the top ten UK universities targeted by employers (The Graduate Market in 2018, High Fliers Research).

REWARDING CAREERS

Our close working relationships with a large number of key companies means that throughout your degree you’ll be exposed to industry and prepared for a career in a professional environment.

Recent graduates have gone on to work for some of the biggest companies in the world, including Covance and Johnson Matthey.

Others have secured PhD positions to work on some of the big discoveries of the future. The career options available to you will be varied and could take you to a rewarding career in government agencies, research institutes, healthcare or industry.

CAREERS SUPPORT

Our dedicated Faculty Employability team will support, guide and advise you, ensuring you graduate with a clear plan of what you want to do next. In addition to specialist face-to-face meetings, you’ll benefit from:

- timetabled employability sessions
- the opportunity for paid summer internships in local SMEs, charities, University of Leeds departments and multi-national organisations
- presentations and workshops delivered by employers.

Our Employability team also organises an annual Careers Fair, which will give you the opportunity to meet over 100 recruiters to gain an insight into graduate jobs and explore work experience and internship opportunities.

STUDENT ENTERPRISE

Some students want to start their own business when they graduate. The University’s innovative SPARK initiative can help you with business start-up support, advice and funding to develop your idea into a viable business.

You also have the opportunity to apply for the Year in Enterprise programme, which gives you the chance to take a year out to develop your business – you’ll receive a £5,000 bursary and have access to advice, mentoring and professional networks.

WE ARE PROUD WINNERS OF THE MOST IMPROVED COMMITMENT TO EMPLOYABILITY AWARD (NUE AWARDS 2018).

The Faculty of Mathematics and Physical Sciences Employability team won the Most Improved Commitment to Employability Award at the National Undergraduate Employability Awards Ceremony in 2018. This is a reflection of the unrivalled support given to our students at Leeds, and the widening pool of work experience opportunities available to students in today’s competitive market.
INDUSTRIAL PLACEMENT

An industrial placement is a fantastic way to gain work experience and find out first-hand how interdisciplinary science is practised in a non-academic setting. You’ll spend a year as an employee of an organisation, gaining a deeper understanding of the challenges and possibilities of the area of industry you want to work in.

Our Natural Sciences MNatSc, BSc course offers the opportunity for an industrial placement between years 2 and 3 or years 3 and 4 of your degree. This will extend the length of your course by a year.

Our dedicated Employability team will work with you during a series of placement information and preparation sessions. These sessions will inform you of the wide variety of options available to you, what to expect from the application process and how to apply.

Additionally, you’ll have the support of a personal tutor throughout your placement year, who will help you decide how to use your experiences in your studies when you return.

“"I am helping on a project aiming to develop a product for firefighters. I really enjoy getting to meet lots of new people from different countries in a completely new environment.""

SOPHIE KIRKPATRICK
NATURAL SCIENCES MNATSC
INDUSTRIAL PLACEMENT YEAR AT DIVERSEY

STUDY ABROAD

Natural scientists are needed all over the world, and our Study Abroad programme gives you the opportunity to find out how science is pursued in other cultures – not just as an observer, but as an active participant.

You can take a study year abroad with your Natural Sciences MNatSc, BSc degree, usually as an additional year after the second of your course.

We have over 400 partner institutions to choose from, including in Australia, Canada, France, Germany, Hungary, Spain, Singapore and the USA. You’ll have the chance to immerse yourself in another culture, make new connections and have unforgettable experiences, while gaining an overseas education and developing the skills employers seek.

If you need help learning a new language before your study year, the University’s Language Centre can arrange study options ahead of time.

“My best experience as a student was my year abroad in Canada. I’ve definitely made some friends for life at university.”

HANNAH CHARLTON
NATURAL SCIENCES MNATSC
STUDY YEAR ABROAD IN CANADA
Natural Sciences is a prestigious degree, designed to prepare you for taking on the scientific challenges of the future.

The course is extremely flexible, giving you the choice of which science subjects you want to study and how much you study of each subject. You can also choose whether or not to spend a year studying abroad or working in industry.

HOW THE COURSE WORKS

The MNatSc course lasts for four years, and during each year you'll study 120 credits. You'll begin by studying three subjects from this list, eventually focusing on two:

- Biology
- Biochemistry
- Chemistry
- Environmental Science
- Food Science and Nutrition
- Mathematics
- Physics

YEAR ONE

In your first year you'll study three subjects and take 40 credits from each.

You can choose your three subjects from a list of seven and the choice is entirely yours. However, if you choose to study physics, you must also study mathematics. You must have achieved grade A in the required A-level.

Note that you cannot choose a combination of environmental science and food science and nutrition.

YEAR TWO

In your second year, you must continue to study at least two of the three subjects that you studied in your first year. You can choose to study these two subjects equally (60 credits of each), or as a major/minor split (80 credits of one subject and 40 of the other).

Alternatively, you could choose to study 50 credits of each subject and make up the remaining 20 credits by either studying the third science subject you studied in your first year or a discovery module from an area of your choosing.

If you study physics in your second year, you must also study at least 20 credits of mathematics.

YEAR THREE

In your third year, you will continue to study the two subjects that you primarily studied in your second year. You could choose to study these two subjects equally (60 credits of each) or as a major/minor split (80 credits of one subject and 40 of the other).

You have the option to study up to 20 credits of Discovery modules in year three. In the BSc programme, you will also undertake a 20-credit independent project.

YEAR FOUR

In the final year of the MNatSc programme, you will undertake an independent research project worth 40-60 credits, with the remaining 60-80 credits spent on optional modules. This must include at least 20 credits of theory in each of your two main subjects.

The research project is your opportunity to pursue the topics that interest you the most. It could be based in one scientific area, or an interdisciplinary project building on both the sciences that you're studying.

For full course details, including module information, visit courses.leeds.ac.uk
YEAR 1
Study three science or mathematics subjects equally.

YEAR 2
Study two subjects equally or as a major/minor split.

You can also choose to take a third subject. This can be another science or a discovery module such as a language course.

YEAR 3
Study two subjects equally or as a major/minor split.

YEAR 4
Study two subjects and undertake a major research project.
COURSE THEMES AND COMBINATIONS

Being able to build a course around your own passions and interests is one of the greatest appeals of Natural Sciences at Leeds. Here are some examples of how subjects can be combined for interdisciplinary study of novel and exciting fields:

MATERIALS SCIENCE AND NANOTEchnology

New materials with reactive and dynamic properties influence everything, from new electronics to self-repairing polymers and new materials for biomedical applications. To control the global properties of materials correctly, you need to understand how they work at the smallest scale. By combining your knowledge of physics, chemistry and maths, you will gain new insights into the nanoscale world.

CHEMISTRY, MATHEMATICS, PHYSICS

NOVEL THERAPEUTICS

The modern-day pharmaceutical industry uses combinations of biological and chemical methods to target disease. New therapies could be a small chemical molecule that selectively targets a biological receptor or an antibody that targets a cancer cell. Some modern therapies even contain biological and chemical components linked together.

CHEMICAL BIOLOGY

Chemical biology lets us use the power of chemistry to gain new insights into biological systems. Chemical synthesis enables the preparation of specific molecular probes that let us understand biological pathways in ever more detail and understand how nature is controlled at the molecular level.
CHEMISTRY, ENVIRONMENTAL SCIENCE, MATHEMATICS

SCIENCE OF THE ATMOSPHERE

The science of the atmosphere controls our everyday lives to such a huge extent that we need to understand the reactions that take place in the atmosphere as well as how species in the atmosphere move and interact. Atmospheric scientists also study other worlds, designing models and experiments to study the atmospheres on extraterrestrial planets and their moons.

“...My subjects complement each other very well, so I feel like I’m just doing a course in all the little things that interest me. It is very interesting to see the different approaches each science has to similar problems and very rewarding to see the overlap and understand all angles of it fully.”

KIM SPIJKERS-SHAW
NATURAL SCIENCES MNATSC

FOOD SCIENCE AND NUTRITION, MATHEMATICS, PHYSICS

SOFTWARE AND FOOD FORMULATION

Understanding and predicting the properties of soft matter requires the application of fundamental concepts in applied mathematics and physics such as fluid dynamics and statistical mechanics. This can be used, for example, to optimise formulation and processing of foods to enhance their texture and mouthfeel, providing consumers with a more enjoyable gastronomic experience.

MATHEMATICS, PHYSICS, BIOCHEMISTRY OR BIOLOGY

BIOPHYSICS

Application of methods from physics in the life sciences has revolutionised our understanding of how biological systems work. Thanks to these high-level physics concepts, we can look at processes such as the folding up of proteins one molecule at a time or understand the tiny changes in energy that occur when molecules interact. At the same time, theoretical modelling methods let us simulate complex biological systems to understand them in ever greater detail.

MATHEMATICS, BIOCHEMISTRY, BIOLOGY

BIOINFORMATICS

The human genome contains about six billion base pairs of DNA. What is the function of the products of these genes and what does the rest of the DNA outside the genes do? These questions require us to be able to handle huge quantities of data, looking for small but significant differences. By combining advanced mathematical methods, statistical analysis and biological insight, bioinformaticians are slowly revealing the subtle control mechanisms buried in the heart of our DNA.

MATHEMATICAL BIOLOGY

Biology is hugely diverse and complex – combinations of high level mathematics and biology let us understand these systems in unprecedented detail. From the diversity of genes to evolution and population dynamics, your mathematical knowledge will help you develop new insights into these key processes.

MODULES

A very large number of potential modules is available on this course. For a complete list, please visit the course catalogue: www.leeds.ac.uk/courses

The range of compulsory and optional modules available to you depends on which science subjects you choose to focus on. Some modules become compulsory if you choose certain combinations of subjects.
ENTRY REQUIREMENTS
AND HOW TO APPLY

A-level: A*AA, including sciences relating to pathway.

Your A-level subject combination must enable the study of three subjects in year one. See table below for details of which A-level is required to study which subject on the course.

A-level General Studies and Critical Thinking are excluded. Where an A-level science subject is taken, we require a pass in the practical science element, alongside the achievement of the A-level at the stated grade.

We also accept a variety of alternative qualifications. Check our website for details.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Required A-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>Biology</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Biology or Chemistry</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Environmental science</td>
<td>Any two science subjects</td>
</tr>
<tr>
<td>Food science and nutrition</td>
<td>Any two science subjects</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Physics</td>
<td>Physics and Mathematics</td>
</tr>
</tbody>
</table>

ENGLISH LANGUAGE REQUIREMENTS

GCSE English Language grade C (or above) or an equivalent recognised English language qualification, eg IELTS 6.0 overall with no less than 5.5 in each element.
THE APPLICATION PROCESS

ACCESS TO LEEDS

We’re committed to identifying the best possible applicants, regardless of personal circumstances or background. If you do not meet our entry criteria, you may be eligible through the Access to Leeds scheme.

leeds.ac.uk/a2l

HOW TO APPLY

All undergraduate applications should be made through the Universities and Colleges Admissions Service (UCAS).

ucas.com

OFFER PROCESS

Suitable applicants will be invited to an applicant day, which gives you the opportunity to meet our academic staff and students, enjoy a tour of our facilities, view student accommodation and find out more about your course.

We like to interview applicants before making an offer, so the day will also include an interview with one of our academics. This will give you the chance to discuss your application in more detail, check that it’s the right course for you and your career plans, have your questions answered and find out more about studying at Leeds.

SCHOLARSHIPS

The University of Leeds has a long-standing history of helping students to manage their finances while at University, with a comprehensive range of bursaries and scholarships available.

natsci.leeds.ac.uk/undergraduate/scholarships

CONTACT US

If you require any more information about our courses, modules or any other aspect of studying Natural Sciences at Leeds, please contact our Undergraduate Admissions team.

C/O School of Chemistry
University of Leeds
Leeds LS2 9JT, UK

Tel: +44 (0)113 343 6440
Email: natsci@leeds.ac.uk

FIND US ONLINE

natsci@leeds.ac.uk
@ScienceLeeds