# Harmonic maps into G2/SO(4) and their twistor lifts

**Date**: Wednesday 26 July 2017, 15:00 – 16:30**Location**: Roger Stevens LT 12 (10M.12)**Type**: Geometry, Seminars, Pure Mathematics**Cost**: Free

#### Martin Svensson, University of Southern Denmark. Part of the geometry seminar series.

Burstall and Rawnsley have shown how the canonically fibered flag manifolds sit inside the twistor space of a compact, simply connected inner Riemannian symmetric space. It is known that a harmonic map from a surface into an inner Riemannian symmetric space of classical type has a twistor lift into such a flag manifold if and only if it is nilconformal in the sense that its derivative is nilpotent. In this talk, I will show that this result can be generalised to harmonic maps into the exceptional inner symmetric space $G_2/SO(4)$. I will describe the structure of the canonically fibered flag manifolds over this space and the construction of the twistor lifts of nilconformal harmonic maps. I will also show how almost complex maps into $S^6$ can be used to construct harmonic maps into $G_2/SO(4)$. The talk will be based on joint work with John C. Wood.

**Martin Svensson**, *University of Southern Denmark*