The origins of life

Simulating how the Earth kick-started metabolism

Impact summary

This research has developed a new way of simulating the energetic processes that may have led to the emergence of cell metabolism on Earth (a crucial biological function for all living organisms).

The research could help scientists to understand whether it’s possible for life to have emerged in similar environments on other planets.

The research aimed to bridge the gap between the geological processes of the early Earth and the emergence of biological life on this planet. 

Previously, scientists had said that living organisms may have been transported to Earth by meteorites. 

Yet there is more support for the theory that life emerged on Earth in places like hydrothermal vents on the ocean floor, forming from inanimate matter such as the chemical compounds found in gases and minerals.

Underpinning research

Before biological life, we can say that the early Earth had ‘geological life’.

It may seem unusual to consider geology, involving inanimate rocks and minerals, as being alive. 

But what is life?

Many scientists have failed to come up with a satisfactory answer to this question. 

So, what researchers at Leeds have done instead is to look at what life does, and all life forms use the same chemical processes that occur in a fuel cell to generate their energy.

Fuel cells in cars generate electrical energy by reacting fuels and oxidants. 

This is an example of a ‘redox reaction’, as one molecule loses electrons (is oxidised) and one molecule gains electrons (is reduced).

Similarly, photosynthesis in plants involves generating electrical energy from the reduction of carbon dioxide into sugars and the oxidation of water into molecular oxygen. 

And respiration in cells in the human body is the oxidation of sugars into carbon dioxide and the reduction of oxygen into water, with electrical energy produced in the reaction.

Certain geological environments, such as hydrothermal vents, can be considered as ‘environmental fuel cells’, since electrical energy can be generated from redox reactions between hydrothermal fuels and seawater oxidants, such as oxygen.

Researchers in Japan demonstrated that electrical power can be harnessed from these vents in a deep-sea experiment in Okinawa.

In our study, a proof of concept has been demonstrated for the fuel cell model of the emergence of cell metabolism on Earth.

In the lab at the University of Leeds and NASA’s Jet Propulsion Laboratory, the team replaced traditional platinum catalysts in fuel cells and electrical experiments with those composed of geological minerals.

Dr Laura Barge from the NASA Astrobiology Institute ‘Icy Worlds’ team at JPL in California, said: “Certain minerals could have driven geological redox reactions, later leading to a biological metabolism. 

“We’re particularly interested in electrically conductive minerals containing iron and nickel that would have been common on the early Earth.”

Iron and nickel are much less reactive than platinum. 

However, a small but significant power output successfully demonstrated that these metals could still generate electricity in the fuel cell – and hence also act as catalysts for redox reactions within hydrothermal vents in the early Earth.

For now, the chemistry of how geological reactions driven by inanimate rocks and minerals evolved into biological metabolisms is still unknown. 

But, with a lab-based model for simulating these processes, scientists have taken an important step forward to understanding the origin of life on this planet and whether a similar process could occur on other planets.

The research was done by our Atmospheric and Planetary Chemistry research group.