ERC-Funded PhD studentship on Dynamic Control of Crystallization Processes using Microfluidic Systems

Supervisor(s)

Contact Professor Fiona Meldrum to discuss this project further informally.                 

Project description

This 4-year PhD studentship is offered as part of a €2.6M ERC Advanced Grant to Professor Fiona Meldrum “DYNAMIN – Dynamic Control of Mineralization”. Crystallization underpins a vast range of processes as diverse as the production of nanomaterials, ceramics, and pharmaceuticals, the generation of bones, teeth and seashells, weathering and frost-heave, ice and rock formation in our environment and the generation of scale of kettles and oil-wells. Understanding the fundamental mechanisms that govern crystallization processes therefore promises the ability to inhibit or promote crystallization as desired, and to tailor the properties of crystalline materials for a huge range of applications. The DYNAMIN project will take inspiration from biomineralization to achieve exceptional, dynamic control over crystallization processes, where organisms achieve control currently unparalleled in synthetic systems.

This is achieved because mineralization occurs within controlled environments in which an organism can interact with the nascent mineral. To achieve this ambitious goal we need to be able to create well-defined reaction environments, and to rigorously characterize crystallization processes with excellent time resolution using cutting-edge techniques. Thanks to recent advances in microfabrication techniques and analytical methods we finally have the tools required to bring this capability to the laboratory. This PhD project will exploit microfluidic systems to study and interact with crystallisation processes with outstanding spatial and temporal resolution, and will exploit both flowing droplets and defined, static chambers. Flowing droplet devices will be coupled to advanced analytical techniques – including synchrotron-based methods such as XRD, small angle scattering (SAXS) and total scattering techniques – to investigate and control nucleation.

This will provide unprecedented insight into the early stages of crystallization. Solutions, particles and organic additives will also be added to the flowing droplets at specific time points to change their compositions and direct the crystallization pathway. Finally, static chambers will be created in order to interact with crystallisation processes over longer length and time scales to achieve spatio-temporal control to rival that in biomineralization. The position is available from September 2018 and applications will be accepted until the position is filled.

Entry requirements

Applications are invited from candidates with or expecting a minimum of a UK first class honours degree (1st), and/or a Master's degree in physical sciences or engineering.

How to apply

Formal applications for research degree study should be made online through the university's website. Please state clearly in the research information section that the PhD you wish to be considered for is 'ERC-Funded PhD studentship on Dynamic Control of Crystallization Processes using Microfluidic Systems' as well as Professor Fiona Meldrum as your proposed supervisor.

If English is not your first language, you must provide evidence that you meet the University's minimum English Language requirements.

We welcome scholarship applications from all suitably-qualified candidates, but UK black and minority ethnic (BME) researchers are currently under-represented in our Postgraduate Research community, and we would therefore particularly encourage applications from UK BME candidates. All scholarships will be awarded on the basis of merit.

If you require any further information please contact the Graduate School Office e: maps.pgr.admissions@leeds.ac.uk